

IMIDAZOLE SCAFFOLD IN DRUG DISCOVERY: RECENT PROGRESS IN SYNTHESIS AND PHARMACOLOGICAL APPLICATIONS

Mahesh Kumar N.^{1*}, Priya A.¹, Dr. Shachindra L. Nargund¹

Department of Pharmaceutical Chemistry, Nargund College of Pharmacy, Bangalore-560085, India.

Article Received: 23 July 2025

***Corresponding Author: Mahesh Kumar N.**

Article Revised: 13 August 2025

Department of Pharmaceutical Chemistry, Nargund College of Pharmacy,

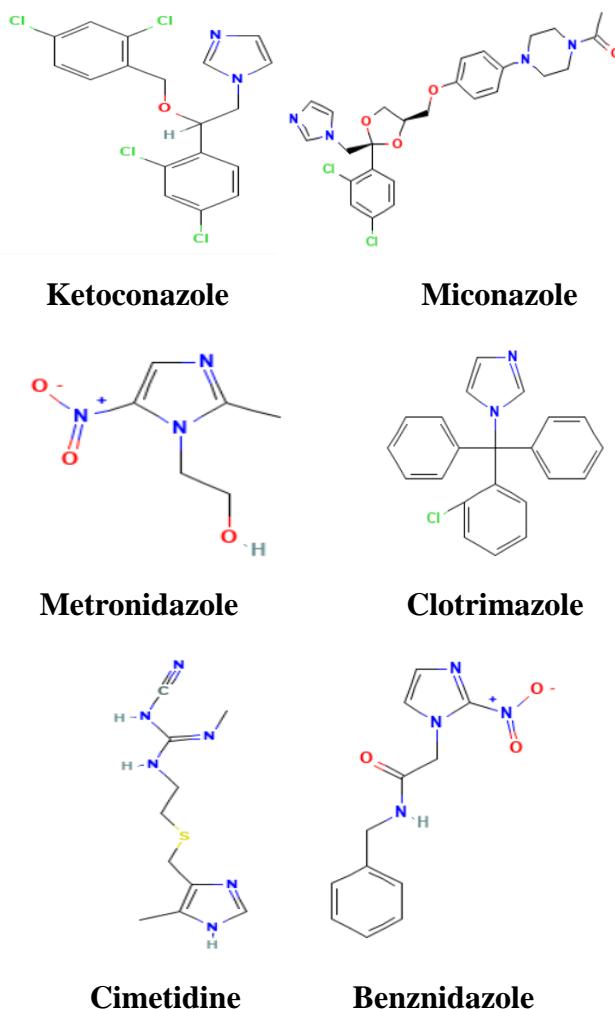
Published on: 03 September 2025

Bangalore- 560085, India. Email Id: maheshnr2018@gmail.com,

<https://doi-doi.org/101555/ijrpa.7638>

ABSTRACT

Imidazoles are compact, polar, hydrogen-bonding heterocycles that play a vital role in modern drug discovery. They are present in antifungal drugs (clotrimazole, ketoconazole, miconazole), nitroimidazole antibacterials/antiprotozoals (metronidazole, benzimidazole), and H₂-receptor antagonists (cimetidine). Advances in synthetic chemistry particularly the Debus–Radziszewski and van Leusen routes, alongside green enabling technologies such as microwave-assisted and solvent-free methods have simplified access to highly substituted analogues. Pharmacologically, imidazole derivatives act on diverse targets including fungal CYP51, bacterial DNA, protozoal enzymes, and histamine receptors. This review highlights synthetic methodologies, pharmacological mechanisms, and therapeutic applications of imidazoles, while addressing structure–activity relationships, resistance and future perspectives.

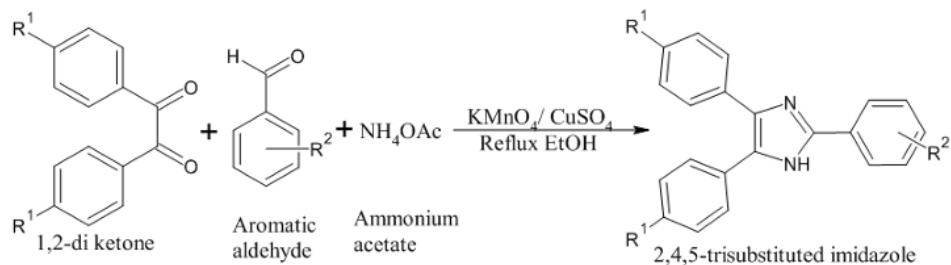

KEYWORDS: Antifungal; Antiprotozoal; Microwave synthesis; Flow Chemistry.

1. INTRODUCTION

The imidazole ring system is one of the most widely studied heterocycles in medicinal chemistry because of its unique structural and physicochemical properties. It is a five-membered aromatic heteroaromatic nucleus containing two nitrogen atoms at non-adjacent positions, which gives the molecule amphoteric character and the ability to participate in both hydrogen bonding and π – π stacking interactions.[1] This dual functionality makes imidazole

derivatives highly versatile in biological systems, where they can act as hydrogen bond donors, acceptors, or metal-coordinating ligands. Such features explain why imidazole is frequently classified as a “privileged scaffold” in drug discovery.

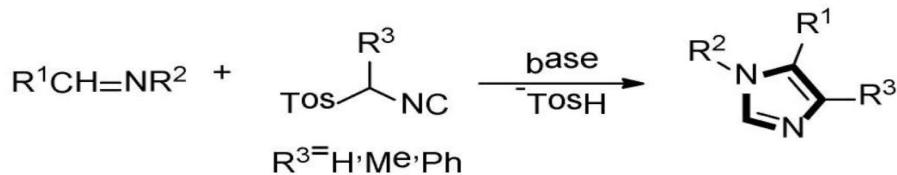
Over the past few decades, imidazole-containing compounds have achieved significant clinical success across diverse therapeutic areas. Some of the earliest and most impactful examples are antifungal drugs such as miconazole and ketoconazole, which act by disrupting fungal sterol biosynthesis, ultimately leading to compromised cell membranes and fungal cell death.[2] Beyond antifungal therapy, imidazoles have also been central in the development of antibacterial and antiprotozoal drugs. A classic example is metronidazole, a nitroimidazole derivative that selectively targets anaerobic organisms by undergoing reductive activation inside microbial cells, thereby generating toxic intermediates that damage DNA. Similarly, benznidazole remains one of the few effective oral drugs for the treatment of *Trypanosoma cruzi* infections, the causative agent of Chagas disease.[3]


Fig. 1: Imidazole scaffold containing compounds.

The clinical scope of imidazoles extends further into gastrointestinal pharmacology. The discovery of cimetidine, the first histamine H₂-receptor antagonist, represented a major breakthrough in the treatment of peptic ulcer disease and gastroesophageal reflux. By competitively blocking H₂ receptors in gastric parietal cells, cimetidine significantly reduced gastric acid secretion, revolutionizing ulcer therapy and paving the way for subsequent generations of acid-suppressing drugs [4]. Current research is focused not only on designing safer and more effective analogues of established imidazole drugs but also on identifying new pharmacological targets that can harness the unique binding capabilities of this heterocycle.

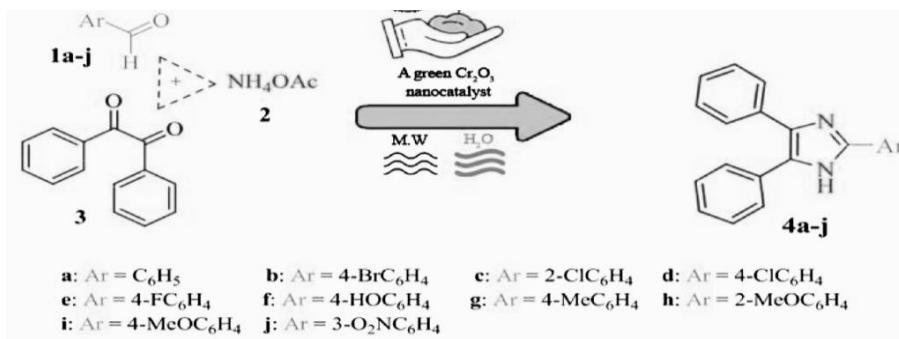
2. SYNTHETIC CHEMISTRY OF IMIDAZOLES

2.1 Debus–Radziszewski multicomponent synthesis


The Debus–Radziszewski (D–R) condensation, involving a 1,2-dicarbonyl compound, ammonia or amine, and an aldehyde, is the classical route for 2,4,5-trisubstituted imidazoles.[5] This method offers flexibility in introducing various substituents and has even been adapted for polymer synthesis.[6] Recent modifications using eco-friendly solvents and catalysts improve atom economy and scalability.[7]

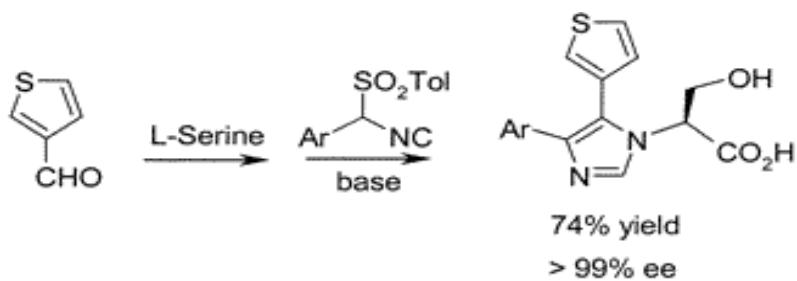
Scheme 1: Synthetic route of imidazole by condensation.

2.2 Van Leusen imidazole synthesis


The van Leusen reaction employs tosylmethyl isocyanide (TosMIC) and imines to yield 1,4,5-trisubstituted imidazoles with high regioselectivity.[8] Its wide substrate scope makes it a cornerstone method for generating pharmacologically active imidazoles.[9] Modern adaptations include organocatalytic and one-pot strategies, which are highly relevant for medicinal chemistry.[10]

Scheme 2: Synthesis of imidazoles by using TosMIC catalyst.

2.3 Modern Synthetic approaches


Microwave irradiation has reduced D–R reaction times drastically, producing higher yields in greener conditions.[11] Similarly, ionic liquids and solvent-free methods have emerged as sustainable alternatives to traditional solvents.[12] Sonochemistry has been applied successfully to synthesize polysubstituted imidazoles with enhanced efficiency.[13]

Scheme 3: Synthesis of imidazole derivatives 4a–j with Cr_2O_3 as catalyst under microwave irradiation.

2.4 Diversity-oriented synthesis

Flow chemistry and polymer-supported reagents have further streamlined imidazole synthesis, improving purification and scalability.[14] Modified van Leusen protocols that exploit rearrangements enable access to unique substitution patterns, broadening SAR exploration.[15]

Scheme 4: Synthesis of imidazoles by using polymers.

3. PHARMACOLOGICAL APPLICATIONS

3.1 Antifungal activity

Imidazole derivatives have played a central role in antifungal therapy since the discovery of clotrimazole and miconazole in the late 20th century. These agents function by targeting lanosterol 14- α -demethylase (CYP51), a cytochrome P450 enzyme crucial for ergosterol biosynthesis, an essential component of the fungal cell membrane.[16] Inhibition of CYP51

leads to depletion of ergosterol and accumulation of toxic sterol intermediates, ultimately causing structural and functional disruption of fungal membranes. Clinical imidazole antifungals such as ketoconazole, miconazole, and clotrimazole remain widely prescribed, particularly for mucocutaneous infections including candidiasis, dermatophytosis, and pityriasis versicolor.[17] Miconazole is available in topical creams, oral gels, and buccal tablets, reflecting its broad safety profile and high local efficacy.[18] Recent formulations have also explored fixed-dose combinations, such as miconazole with corticosteroids, which enhance clinical response in mixed inflammatory fungal infections.[19]

3.2 Nitroimidazoles as antibacterials and antiprotozoals

The nitroimidazole class, led by metronidazole, represents another cornerstone of infectious disease pharmacotherapy. Unlike azoles, which inhibit enzymes, nitroimidazoles undergo reductive bioactivation within anaerobic organisms. Inside such environments, microbial nitro reductases convert the nitro group into reactive intermediates capable of binding DNA and proteins, leading to strand breaks and cell death.[20] Clinically, metronidazole is indispensable for the treatment of anaerobic bacterial infections, including intra-abdominal sepsis and pelvic inflammatory disease, as well as protozoal infections like giardiasis, trichomoniasis, and amoebiasis.[21] Structural optimization has revealed that 5-nitroimidazoles consistently outperform their 4-nitro counterparts in terms of antimicrobial potency, a fact attributed to favourable redox properties and better cellular uptake.[22]

3.3 Antitrypanosomal agents

Among the most significant contributions of imidazoles to neglected tropical disease treatment is benznidazole, a nitroimidazole derivative approved for Chagas disease, caused by *Trypanosoma cruzi*. Benznidazole exerts trypanocidal effects primarily through the generation of reactive species after nitro group reduction, which damages parasite DNA and proteins.[23] Benznidazole remains a first-line therapy, particularly in children and in acute or early chronic infections. However, its long treatment courses (60 days) are associated with adverse reactions such as dermatitis, gastrointestinal discomfort, and peripheral neuropathy, which frequently lead to treatment discontinuation.[24] Current clinical trials are therefore evaluating shorter and lower-dose regimens to improve patient adherence and safety.[25]

3.4 Gastrointestinal applications

The discovery of cimetidine, the first H₂-receptor antagonist, was a milestone in both gastroenterology and pharmaceutical chemistry. By competitively binding to histamine H₂

receptors in gastric parietal cells, cimetidine effectively reduces basal and stimulated gastric acid secretion.[26] This breakthrough transformed the management of peptic ulcer disease and gastroesophageal reflux disease (GERD), conditions that previously required invasive surgical interventions.[27] Though later superseded by more potent H₂ blockers (e.g., ranitidine, famotidine) and proton pump inhibitors (e.g., omeprazole), cimetidine remains historically significant as one of the first blockbuster drugs. Its success validated the concept of rational drug design, as the imidazole nucleus was deliberately engineered to interact with histamine binding sites.[28] Moreover, cimetidine's imidazole ring contributes to its ability to inhibit certain cytochrome P450 enzymes, a property that, while clinically important for drug–drug interactions, also underscored the scaffold's pharmacological versatility.

4. STRUCTURE–ACTIVITY RELATIONSHIPS (SAR)

- ***Antifungal azoles:*** The imidazole nitrogen coordinates with the heme iron of CYP51, and lipophilic substituents improve potency by enhancing membrane affinity, though solubility can be compromised.[16,18]
- ***Nitroimidazoles:*** Electron-withdrawing substituents fine-tune redox potential; 5-nitroimidazoles consistently show greater activity against anaerobic pathogens.[21,22]
- ***Cimetidine analogues:*** The imidazole nucleus is essential for H₂ receptor recognition; modifications in the side chain modulate potency and drug–drug interaction potential.[26]

5. SAFETY AND RESISTANCE

Although imidazole derivatives have transformed the treatment landscape for fungal and parasitic diseases, their clinical use is not without significant safety considerations. Systemic azoles, particularly ketoconazole, are well known for their risk of hepatotoxicity and potential endocrine-related side effects due to inhibition of human cytochrome P450 enzymes involved in steroid biosynthesis.[29] As a result, regulatory agencies now restrict the use of ketoconazole for systemic infections, highlighting the delicate balance between therapeutic efficacy and off-target toxicity.

Nitroimidazoles, including metronidazole and benznidazole, though highly effective, are also associated with dose- and duration-dependent adverse effects. Patients frequently report gastrointestinal discomfort, metallic taste, dizziness, and headaches, while long-term use has been linked to peripheral neuropathy, significantly impacting compliance.[20,23] These

toxicities limit their suitability for chronic conditions and underscore the need for better-tolerated alternatives.

Resistance has emerged as another pressing concern. Among fungi, particularly *Candida* species, resistance to azoles is increasingly reported. Mechanisms include overexpression of efflux pumps, point mutations in the *ERG11* gene that reduce drug binding, and alterations in ergosterol biosynthesis pathways, all of which decrease azole susceptibility.[30] Likewise, in anaerobic bacteria and protozoa, reduced nitro reductase activity and enhanced biofilm formation contribute to metronidazole resistance.[31] These trends pose a challenge for clinicians and emphasize the urgent need for rational antimicrobial stewardship and continuous development of new derivatives capable of overcoming resistance mechanisms.

6. FUTURE PROSPECTIVES

Despite these challenges, the imidazole scaffold continues to offer enormous potential for future drug development. One promising area is the adoption of greener and more sustainable synthetic approaches. Techniques such as microwave-assisted synthesis, ionic liquid-mediated reactions, and deep eutectic solvent systems are enabling efficient, eco-friendly production of imidazole derivatives with reduced environmental footprint and improved scalability.[32]

In parallel, late-stage diversification strategies are providing medicinal chemists with the tools to fine-tune pharmacokinetic and pharmacodynamic properties without extensive re-synthesis. This allows rapid generation of analogues with optimized solubility, selectivity, and safety profiles. Efforts to design safer nitroimidazole derivatives with reduced toxicity and improved therapeutic index are also gaining traction, particularly for long-term treatment of neglected diseases such as Chagas disease.[23,32]

Furthermore, advances in computational chemistry, molecular docking, and structure-activity relationship (SAR) modelling are revolutionizing the way imidazole derivatives are designed. These *in silico* methods not only reduce the time and cost of drug discovery but also facilitate the rational identification of novel targets, from fungal enzymes to bacterial and protozoal proteins, and even metabolic pathways in non-infectious diseases.[33]

Taken together, these developments suggest a vibrant future for the imidazole nucleus in pharmaceutical research. By uniting green chemistry innovations with computational tools

and resistance-aware design, the next generation of imidazole-based therapeutics has the potential to be both safer and more effective, ensuring that this privileged scaffold remains central to modern medicine.

7. CONCLUSION

Imidazoles have established themselves as a privileged scaffold in medicinal chemistry, with applications ranging from antifungal and antibacterial agents to antiprotozoals and gastrointestinal drugs. Their unique structural features aromaticity, hydrogen-bonding capacity, and synthetic versatility explain their broad pharmacological relevance. Despite the remarkable clinical success of agents such as miconazole, metronidazole, benznidazole, and cimetidine, challenges including drug resistance and toxicity continue to limit their long-term effectiveness. Advances in green synthetic methodologies and computational drug design are now creating opportunities to generate safer and more potent analogues. With these innovations, the imidazole nucleus is expected to remain a cornerstone for future drug discovery, offering solutions to both emerging infectious threats and established therapeutic needs.

8. ACKNOWLEDGMENT

We are thankful to the management of Nargund College of Pharmacy, Bangalore for continuous support and encouragement.

9. CONFLICTS OF INTEREST

All authors declare no conflicts of interest.

10. REFERENCES

1. Sixer S, Marestin C, Mercier R, Dupuy J, Maury S, Cloutet E, et al. Imidazole-containing polymers: from synthesis to applications. *Polym Chem*. 2018;9(14):1927–33.
2. Van Leusen AM, Van Leusen D. The van Leusen reaction: synthesis of heterocycles via tosylmethyl isocyanides. *Molecules*. 2020;25(7):1630.
3. Silva LM, de Oliveira Lima E, Pires RH, Fernandes OF, Souza LK, Silva-Neto ID, et al. Antifungal potential of imidazole derivatives. *J Appl Microbiol*. 2013;115(2):251–8.
4. Konturek SJ. Discovery of histamine H₂-receptor antagonists. *Gut*. 1979;20(6):531–6.
5. Sixer S, Marestin C, Mercier R, Dupuy J, Maury S, Cloutet E, et al. Imidazole polymers in medicinal chemistry. *Polym Chem*. 2018;9(14):1927–33.
6. Müller M. Mode of action of metronidazole and other nitroimidazole drugs. *Parasitology*. 2018;145(2):187–98.

7. García-Álvarez J, López-Sanz S, Blanco-Canosa JB, Martínez-Álvarez R, Herrera RP, Nájera C, et al. Greener synthesis of imidazoles: ionic liquid and eutectic solvent strategies. *Synth Commun.* 2025;55(9):1347–56.
8. Van Leusen AM, Van Leusen D. The chemistry of TosMIC in imidazole synthesis. *Molecules.* 2020;25(7):1630.
9. Van Leusen AM, Siderius H, Hoogenboom B, Van Leusen D. Practical aspects of van Leusen imidazole synthesis. *J Org Chem.* 2000;65(22):7516–23.
10. Roy I, Sahoo AK, Das P, Chakraborty S, Paul S, Jana S, et al. Microwave-assisted synthesis of heterocycles: applications in drug discovery. *ACS Sustain Chem Eng.* 2025;13(20):6112–20.
11. Kappe CO, Dallinger D, Murphree SS. Practical microwave synthesis of heterocycles. *Tetrahedron Lett.* 2000;41(37):6331–5.
12. Niknam K, Saberi D, Bagherzadeh M, Zeynizadeh B, Shaterian HR, Abolhasani S. Eco-friendly methods for imidazole synthesis. *Green Chem Lett Rev.* 2021;14(4):569–77.
13. Daghagheleh M, Shaterian HR, Abolhasani S, Niknam K, Zeynizadeh B, Esmaeili S. Sonochemical synthesis of polysubstituted imidazoles. *Sci Rep.* 2022;12(1):20529.
14. García-Álvarez J, López-Sanz S, Blanco-Canosa JB, Martínez-Álvarez R, Herrera RP, Nájera C, et al. Continuous-flow synthesis of imidazoles. *Synth Commun.* 2025;55(9):1347–56.
15. Castagnolo D, Manetti F, Radi M, Bechi B, De Logu A, Supino S, et al. Synthesis and antimicrobial activity of new imidazole derivatives. *Antimicrob Agents Chemother.* 2006;50(1):344–7.
16. Silva LM, de Oliveira Lima E, Pires RH, Fernandes OF, Souza LK, Silva-Neto ID, et al. Mechanism of action of imidazole antifungals. *J Appl Microbiol.* 2013;115(2):251–8.
17. Alves C, Azevedo M, Silva I, Pereira F, Martins A, Ferreira J, et al. Clinical evaluation of miconazole formulations in vulvovaginal candidiasis. *J Obstet Gynaecol.* 2023;43(8):1297–306.
18. U.S. Food and Drug Administration. Medical review: Miconazole buccal tablet. Silver Spring: FDA; 2010.
19. Rodríguez-Tudela JL, Alastrauey-Izquierdo A, Cuenca-Estrella M, Gómez-López A, Mellado E, García-Effrón G, et al. Resistance mechanisms to azole antifungals in *Candida* species. *J Fungi.* 2021;7(10):812.
20. Lofmark S, Edlund C, Nord CE. Metronidazole: pharmacokinetics and resistance. *Clin Pharmacokinet.* 1999;36(5):353–73.

21. Müller M. Mechanistic insights into nitroimidazole bioactivation. *Parasitology*. 2018;145(2):187–98.
22. Lamp KC, Rybak MJ, Bailey EM, Neu HC, Edlund C, Nord CE, et al. Comparative activity of nitroimidazoles. *J Antimicrob Chemother*. 2018;73(2):265–80.
23. Molina I, Gómez i Prat J, Salvador F, Treviño B, Sulleiro E, Serre N, et al. Efficacy of benznidazole in chronic Chagas disease. *Antimicrob Agents Chemother*. 2015;59(11):6511–9.
24. Viotti R, Vigliano C, Lococo B, Alvarez MG, Petti M, Bertocchi G, et al. Long-term evaluation of benznidazole therapy. *PLoS Negl Trop Dis*. 2020;14(6):0008529.
25. Hasslocher-Moreno A, Saraiva RM, Sangenis LHC, Xavier SS, Sousa AS, Costa AR, et al. Benznidazole therapy in different dosing regimens. *Lancet Infect Dis*. 2023;23(5):137–45.
26. Black JW, Duncan WA, Durant CJ, Ganellin CR, Parsons EM. Definition and development of histamine H₂-receptor antagonists. *Nature*. 1972;236(5347):385–90.
27. Goodman LS, Brunton LL, Gilman AG, Murad F, Hardman JG, Limbird LE. Pharmacological basis of cimetidine action. *Clin Pharmacokinet*. 1989;16(1):1–10.
28. Konturek SJ. Role of cimetidine in gastrointestinal pharmacotherapy. *Gut*. 1979;20(6):531–6.
29. Silva LM, de Oliveira Lima E, Pires RH, Fernandes OF, Souza LK, Silva-Neto ID, et al. Hepatotoxicity of systemic azoles. *J Appl Microbiol*. 2013;115(2):251–8.
30. Krishnan R, Shankar R, Somasundaram B, Selvaraj K, Subramanian G, Srinivasan V, et al. Resistance mechanisms against antifungal imidazoles. *Chem Biol Interact*. 2021;349:109660.
31. Castagnolo D, Manetti F, Radi M, Bechi B, De Logu A, Supino S, et al. SAR of imidazole antimicrobials. *Antimicrob Agents Chemother*. 2006;50(1):344–7.
32. Roy I, Sahoo AK, Das P, Chakraborty S, Paul S, Jana S, et al. Microwave-assisted sustainable heterocycle synthesis. *ACS Sustain Chem Eng*. 2025;13(20):6112–20.
33. García-Álvarez J, López-Sanz S, Blanco-Canosa JB, Martínez-Álvarez R, Herrera RP, Nájera C, et al. Eutectic solvent-enabled imidazole construction. *Synth Commun*. 2025;55(9):1347–56.